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Abstract. This paper focuses on the instruction fetch resources in a
real-time SMT processor to provide an energy-efficient configuration for
a soft real-time application running as a high priority thread as fast as
possible while still offering decent progress in low priority or non-real-
time thread(s). We propose a fetch mechanism, Fetch-around, where a
high priority thread accesses the L1 ICache, and low priority threads
directly access the L2. This allows both the high and low priority threads
to simultaneously fetch instructions, while preventing the low priority
threads from thrashing the high priority thread’s ICache data. Overall,
we show an energy-performance metric that is 13% better than the next
best policy when the high performance thread priority is 10x that of the
low performance thread.

Keywords: Caches, Embedded Processors, Energy Efficiency, Real-time,
SMT.

1 Introduction

Simultaneous multithreading (SMT) techniques have been proposed to increase
the utilization of core resources. The main goal is to provide multiple thread con-
texts from which the core can choose instructions to be executed. However, this
comes at the price of a single thread’s performance being degraded at the expense of
the collection of threads achieving a higher aggregate performance. Previous work
has focused on the techniques to provide each threadwith a fair allocation of shared
resources. In particular, the instruction fetchbandwidthhasbeen the focus ofmany
papers, and a round-robin policy with directed feedback from the processor [1] has
been shown to increase fetch bandwidth and overall SMT performance.

Soft real-time systems are systems which are not time-critical [2], meaning
that some form of quality is sacrificed if the real-time task misses its deadline.
Examples include real audio/video players, tele/video conferencing, etc. where
the sacrifice in quality may come in the form of a dropped frame or packet.
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An soft real-time SMT processor is asymmetric in nature that one thread is
given higher priority for the use of shared resources, which becomes the real-time
thread, and the rest of the threads in the system are low-priority threads. In this
case, implementing thread fetching with a round-robin policy is a poor decision.
This type of policy will degrade the performance of the high priority (HP) thread
by lengthening its execution time. Instinctively, a much better solution would
be to assign the full fetch bandwidth to the HP thread at every cycle, and the
low priority (LP) threads can only fetch when the HP thread stalls for data or
control dependency, as was done in as done in [3], [4] and [5]. This allows the
HP thread to fetch without any interruption by the LP threads. On the other
hand, this policy can adversely affect the performance of the LP threads as they
fetch and execute instructions less frequently. Thus, the contribution of the LP
threads to the overall system performance is minimal.

In addition to the resource conflict that occurs for the fetch bandwidth, L1
instruction cache space is also a critical shared resource. As threads execute
they compete for the same ICache space. This means that with the addition of
LP threads to a system, the HP thread may incur more ICache misses and a
lengthened execution time. One obvious solution to avoid the fetch bandwidth
and cache space problems would be to replicate the ICache for each thread, but
this is neither a cost effective nor power efficient solution. Making the ICache
multi-ported [6,7] allows each thread to fetch independently. However, multi-
ported caches are known to be very energy hungry and do not address the cache
thrashing that occurs. An alternative to multi-porting the ICache, would be to
partition the cache into several banks and allow the HP and LP threads to access
independent banks [8]. However, bank conflicts between the threads still needs
to be arbitrated and cache thrashing still occurs.

Ideally, a soft real-time SMT processor would perform the best if provided
a system where the HP and LP threads can fetch simultaneously and the LP
threads do not thrash the ICache space of the HP thread. In this case the HP
thread is not delayed by the LP thread, and the LP threads can retire more
instructions by fetching in parallel to the HP thread. In this paper, we propose
an energy-efficient SMT thread fetching mechanism that fetches instructions
from different levels of the memory hierarchy for different thread priorities. The
HP thread always fetches from the ICache and the LP thread(s) fetch directly
from the L2. This benefits the system in 3 main ways: a) The HP and LP threads
can fetch simultaneously, since they are accessing different levels of the hierarchy,
thus improving LP thread performance. b) The ICache is dedicated to the use
of the HP thread, avoiding cache thrashing from the LP thread, which keeps the
runtime low for the HP thread. c) The ICache size can be kept small since it
only needs to handle the HP thread. Thus reducing the access energy of the HP
thread providing an energy-efficient solution.

Ultimately, this leads to a system with an energy performance that is 13% better
than the next best policy with the same cache sizes when the HP thread has 10x
the priority of the LP thread. Alternatively, it achieves the sameperformance while
requiring only a quarter to half of the instruction cache space. The only additional
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hardware required to achieve this is a private bus between the fetch engine and the
L2 cache, and a second instruction address calculation unit.

The organization of the paper is as follows: Section 2 gives some background
on fetch mechanisms in multi-threaded processors. Section 3 explains the details
of how multiple thread instruction fetch can be performed from different cache
levels. Section 4 introduces the experimental framework and presents energy
and performance results. Finally, Section 5 concludes the paper.

2 Related Work

Static cache partitioning allocates the cache ways among the threads so that
each thread can access its partition. This may not be an efficient technique for
L1 caches in which the set associativity is 2 or 4 way. The real-time thread can
suffer performance losses even though the majority of the cache ways is allocated
to it. Also, the dynamic partitioning [9] allocates cache lines to threads accord-
ing to its priority and dynamic behaviour. Their efficiency comes at a hardware
complexity as the performance of each thread is tracked using monitoring coun-
ters and decision logic, which increases the hardware complexity and may not
be affordable for cost-sensitive embedded processors.

There have been fetch policies proposed for generic SMT processors that dy-
namically allocate the fetch bandwidth to the threads so as to efficiently utilize
the instruction issue queues [10,11]. However, these fetch policies do not address
the problem in the context of attaining a minimally-delayed real-time thread in
a real-time SMT processor.

There also have been some prior investigations on soft and hard real-time SMT
processors. For instance, the HP and LP thread model is explored in [3] in the con-
text of prioritizing the fetchbandwidth among threads.Their proposed fetchpolicy
is that the HP thread has priority for fetching first over the LP threads, and the LP
threads canonly fetchwhen theHPthread stalls. Similarly, [4] investigates resource
allocation policies to keep the performance of the HP thread as high as possible
while performing LP tasks along with the HP thread. [12] discusses a technique to
improve the performance by keeping its IPC of HP thread in an SMT processor un-
der OS control. A similar approach is taken by [13] in which the IPC is controlled to
guarantee the real-time threaddeadlines in anSMTprocessor. [14] investigates effi-
cientways of co-scheduling threads intoa soft real-timeSMTprocessor.Finally, [15]
presents a virtualized SMT processor for hard real-time tasks, which uses scratch-
pad memories rather than caches for deterministic behavior.

3 Simultaneous Thread Instruction Fetch Via Different
Cache Levels

3.1 Real-Time SMT Model

Although the proposed mechanism is valid for any real-time SMT processor
supporting one HP thread and many other LP threads, we will focus on a dual-
thread real-time SMT processor core supporting one HP and one LP thread.
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Figure 1a shows the traditional instruction fetch mechanism in a multi-threaded
processor. Only one thread can perform an instruction fetch at a time. In a
real-time SMT processor, this is prioritized in a way that the HP thread has
the priority to perform the instruction fetch over the LP thread. The LP thread
performs instruction fetch only when the HP thread stalls. This technique will
be called HPFirst, and is the baseline for all comparisons that are performed.

3.2 Fetch-Around Mechanism

We propose an energy-efficient multiple thread instruction fetching mechanism
for a real-time SMT processor as shown in Figure 1b. The HP thread always
fetches from the ICache and the LP thread directly fetches from the L2 cache.
This is called the Fetch-around instruction fetch mechanism because the LP
thread fetches directly from L2 cache passing around the instruction cache. When
the L2 instruction fetch for LP thread is performed, the fetched cache line does
not have to be allocated into the ICache and it is brought through a separate
bus that connects the L2 to the core and is directly written into the LP thread
Fetch Queue in the core.
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Fig. 1. Traditional instruction fetch in a multi-threaded processor (a), simultaneous
thread instruction fetch at different cache levels in a soft real-time SMT processor (b)

This mechanism is quite advantageous because the LP thread is a background
thread and an m-cycle direct L2 fetch can be tolerated as the HP thread is
operating from the ICache. This way, the whole bandwidth of the ICache can be
dedicated to the HP thread. This is very beneficial for the performance of the
HP thread as the LP thread(s) instructions do not interfere with the HP thread,
and therefore no thrashing of HP thread instructions occurs.

The Fetch-around policy may also consume less energy than other fetch poli-
cies. Although accessing the L2 consumes more energy than the L1 due to look-
ing up additional cache ways and larger line sizes, the Fetch-around policy only
needs to read a subset of the cache line (i.e. instruction fetch width) on a L2
I-side read operation from a LP thread. Another crucial factor for cache energy
reduction is that the LP thread does not use the ICache at all, and therefore
does not thrash the HP thread in the ICache. This will reduce the traffic of the
HP thread to the L2 cache, and provide a higher hit rate in the more energy
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efficient ICache. Furthermore, the energy consumed by allocating L2 cache lines
into the ICache is totally eliminated for the LP thread(s). Since the number of
HP thread instructions is significantly larger than the LP, the energy savings of
the HP thread in the ICache outweighs that of the LP threads increase in L2
energy.

In addition to its low energy consumption capability, the Fetch-around policy
has the advantage of not requiring a large ICache for an increased number of
threads. Since the ICache is only used by the HP thread, additional threads in
the system put no more demands on the cache, and the performance remains
the same as single threaded version. It is possible that a fetch policy such as
round-robin may need twice the size of the ICache to achieve the same HP
thread performance level as the Fetch-around policy in order to counteract the
thrashing effect. Thus, the Fetch-around policy is likely to reduce the ICache
size requirements, and therefore the static and dynamic ICache energy.

It takes approximately m-cycles (i.e. the L2 access time) to bring the LP
thread instructions to the core from L2. This effectively means that the LP
thread is fetched at every m cycles. One concern is the cost of the direct path
between the L2 and ICache. This path does not have to be an L2 cache line size
in width since the bus connects directly to the core and only need deliver the
fetch width (2 instructions).

4 Energy and Performance Results

4.1 Experimental Framework

We have performed a cycle-accurate simulation of an SMT implementation of
an ARMv7 architecture-compliant processor using the EEMBC benchmark suite
[16]. We have used 24 benchmarks from the EEMBC benchmark suite covering a
wide range of embedded applications including consumer, automotive, telecom-
munications and DSP. We run all possible dual-thread permutations of these
benchmarks (i.e. 576 runs). A dual-thread simulation run completes when the
HP thread finishes its execution, and then we collect statistics such as total
IPC, degree of LP thread progress, HP thread speedup and etc. We present the
average of these statistics over all runs in the figures.

The simulated processor model is a dual-issue in-order superscalar dual-thread
SMT processor core with 4-way 1KB Icache, 4-way 8KB Dcache, and 8-way
16KB L2 cache. The hit latency is 1 cycle for L1 caches and 8 cycles for the
L2 cache, the memory latency is 60 cycles and the cache line size is 64B for
all caches. There is a 4096-entry global branch predictor with a shared branch
history buffer and a replicated global branch history register for each thread, 2-
way set associative 512-entry branch target buffer, and 8-entry replicated return
address stack for each thread. The ICache delivers 2 32-bit instructions to the
core per instruction fetch request. We used two thread fetch select policies: Fetch-
around and HPFirst. HPFirst is the baseline fetch policy in which only one
thread can fetch at a time, and the priority is always given to the HP thread first.
There are two decoders in the decode stage that can decode up to instructions,
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and the HP thread has the priority over the LP thread to use the two decoders. If
the HP thread instruction fetch queue is empty, then the LP thread instructions,
if any, are decoded. Similarly, the HP thread has the priority to use the two issue
slots. If it can issue only 1 instruction or cannot issue at all, then the LP thread
is able to issue 1 or 2 instructions.

Most of the EEMBC benchmarks can fit into 2-to-8KB instruction cache.
Thus, we deliberately select a very small instruction cache size (i.e. 1KB) to
measure the effect of instruction cache stress. The L2 line size is 512 bits and
the L1 instruction fetch width is 64 bits. From L2 to L1 ICache, a line size of 512
bits (i.e. 8 64 bits) are allocated on an ICache miss. ICache contains 4 banks or
ways, and each bank consists of 2 sub-banks of 64 bits, so 8 sub-banks of 64 bits
comprise a line of 512 bits. When an ICache linefill is performed, all sub-banks
tag and data banks are written. We model both ICache and L2 cache as serial
access caches meaning that the selected data bank is sense-amplified only after
a tag match.

4.2 Thread Performance

We have measured 2 metrics to compare these fetch policies:

1. Slowdown in terms of execution time of the highest priority thread relative
to itself running on the single-threaded processor,

2. Slowdown in terms of CPI of the lowest priority thread. As the HP thread
has the priority to use all processor resources,

Sharing resources with other LP threads lengthens the HP thread execution
time, and therefore we need to measure how the HP thread execution time in
the SMT mode compares against its single-threaded run. In the single-threaded
run, the execution time of the HP thread running alone is measured. Ideally, we
would like not to degrade the performance of the HP thread but at the same time
we would like to improve the performance of the LP thread. Thus, we measure
the slowdown in LP thread CPI under SMT for each configuration with respect
to their single-threaded CPI. The CPI of the LP thread is measured when it
runs alone.

Table 1 shows the percentage slowdown in HP thread execution time relative
to its single-threaded execution time. Although the ICache is not shared among
threads in Fetch-around, the slowdown in the HP thread by about 10% occurs
due to inter-thread interferences in data cache, L2 cache, branch prediction tables
and execution units. On the other hand, the HP thread slowdown is about 13%
in HPFirst. Since Fetch-around is the only fetch policy that does not allow the
LP thread to use the ICache, the HP thread has the freedom to use the entire
ICache and does not encounter any inter-thread interference.

Table 1 also shows the progress of the LP thread under the shadow of the HP
thread measured in CPI. The progress of the LP thread is the slowest in Fetch-
around as expected because the LP thread fetches instructions from L2, which
is 8-cycles away from the core. HPFirst has better LP thread performance as LP
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Table 1. Percentage slowdown in HP thread, and the progress of the LP thread

Single-thread HPFirst Fetch-around
Percentage slowdown in HP N/A 12.7% 9.5%
The LP CPI 1.6 3.8 5.1

thread instructions are being fetched from the ICache in a single cycle access.
However, this benefit comes at the price of evicting HP thread instructions from
the ICache due to interthread interference and increasing the HP thread runtime.

4.3 Area Efficiency of the Fetch-Around Policy

We take a further step by increasing the ICache size from 1KB to 2KB and
4KB for HPFirst and compare its performance to Fetch-around using only a
1KB instruction cache. Table 2 shows that Fetch-around using only a 1KB in-
struction cache still outperforms the other policies having 2 and 4KB ICache
sizes. In addition to Fetch-around and HPFirst fetch policies, we also include
the round-robin (RR) fetch policy for illustration purposes where the threads are
fetched in a round-robin fashion even though it may not be an appropriate fetch
technique for a real-time SMT processor. Although some improvement in HP
thread slowdown (i.e. drop in percentage) is observed in these 2 policies when
the ICache size is doubled from 1KB to 2KB, and quadrupled to 4KB, it is still
far from being close to 9.5% in Fetch-around using 1KB ICache. Thus, these
policies suffer a considerable amount of inter-thread interference in the ICache
even when the ICache size is quadrupled. Table 3 supports this argument by
showing the HP thread instruction cache hit rates. As the ICache is only used
by the HP thread in Fetch-around, its hit rate is exactly the same as the hit rate
of the single-thread model running only the HP thread. On the other hand, the
hit rates in HPFirst and RR are lower than Fetch-around because both policies
observe the LP thread interfering and evicting the HP thread cache lines. These
results suggest that Fetch-around is much more area-efficient than the other
fetch policies.

Table 2. Comparing the HP thread slowdown of Fetch-around using only 1KB in-
struction cache to HPFirst and RR policies using 2KB and 4KB instruction caches

Fetch-around 1K HPFirst 2K HPFirst 4K RR 2K RR 4K
9.5% 12.3% 11.7% 17.7% 17.2%

Table 3. HP Thread ICache hit rates

HPFirst Fetch-around RR
98.6% 97.6% 95.4%
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4.4 Iside Dynamic Cache Energy Consumption

For each fetch policy, the dynamic energy spent in the Iside of the L1 and L2
caches is calculated during instruction fetch activities. We call this Iside dynamic
cache energy. We measure the Iside dynamic cache energy increase in each fetch
policy relative to the Iside dynamic energy consumed when the HP thread runs
alone. We use Artisan 90nm SRAM [17] library to model tag and data RAM
read and write energies for L1I and L2 caches.

Table 4. Percentage of Iside cache energy increase with respect to the HP thread
running in single-threaded mode for 1KB instruction cache

HPFirst Fetch-around RR
75.2% 47% 75%

Table 4 shows the percentage energy increase in the Iside dynamic cache en-
ergy relative to the energy consumed when the HP thread runs alone. Although
accessing the L2 consumes more power than the L1 due to looking up more
ways and reading a wider data width (i.e. 512 bits), Fetch-around consumes less
L2 energy than normal L2 I-side read operations by reading only 64-bits (i.e.
instruction fetch width) for the LP threads. Fetch-around also reduces the L2
energy to some degree as the LP thread does not thrash the HP thread in the
ICache, reducing the HP thread miss rate compared to HPFirst. This smaller
miss rate translates to less L2 accesses from the HP thread, and a reduction in
L2 energy. Besides, Fetch-around also eliminates ICache tag comparisons and
dataRAM read energy for the LP thread. And further saves ICache line alloca-
tion energy by bypassing the ICache allocation for the LP thread. Fetch-around
consumes the least amount of energy among all fetch policies at the expense of
executing fewer LP thread instructions. This fact can be observed more clearly
if the individual energy consumption per instruction of each thread is presented.

Table 5. Energy per Instruction (uJ)

uJ/Inst HPFirst Fetch-around RR
HP Thread 34.3 28.8 34.3
LP Thread 55.3 72.6 47.8

Table 5 presents the energy consumption per HP and LP threads separately.
Fetch-around consumes the least amount of energy per HP thread instruction
even though the execution of an LP thread instruction is the most energy-hungry
among all fetch policies. As the number of HP thread instructions dominate the
number of LP thread instructions, having very low energy-per-HP-instruction
causes the Fetch-around policy to obtain the lowest overall Iside cache en-
ergy consumption levels. HPFirst and RR have about the same energy-per-HP-
instruction while RR has lower energy-per-LP-instruction than HPFirst. RR
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retires more LP thread instructions than HPFirst, and this behavior (i.e. RR
retiring a high number of low-energy LP thread instructions and HPFirst retir-
ing a low number of high-energy LP thread instructions) brings the total Iside
cache energy consumption of both fetch policies to the same level.

4.5 Energy Efficiency of the Fetch-Around Policy

The best fetch policy can be determined as the one that gives higher performance
(i.e. low HP thread slowdown and low LP thread CPI) and lower Iside cache en-
ergy consumption, and should minimize the product of the thread performance
and Iside cache energy consumption overheads. The thread performance over-
head is calculated as the weighted mean of the normalized HP Execution Time
and LP Thread CPI as these two metrics contribute at different importance
weights or degrees of importance into the overall performance of the real-time
SMT processor. Thus, we introduce two new qualitative parameters called HP
thread degree of importance and LP thread degree of importance, which can take
any real number. When these two weights are equal, this means that the per-
formance of both threads is equally important. If the HP thread degree of im-
portance is higher than the LP thread degree of importance, the LP thread
performance is sacrificed in favor of attaining higher HP thread performance.
For a real-time SMT system, the HP thread degree of importance should be
much greater than the LP thread degree of importance. HP Execution Time,
LP Thread CPI, and Iside Cache Energy are normalized by dividing each term
obtained in SMT mode by the equivalent statistic obtained when the relevant
thread runs alone. The Iside Cache Energy is normalized to the Iside cache energy
consumption value when the HP thread runs alone. These normalized values are
always greater than 1 and represent performance and energy overhead relative
to the single-thread version.
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Fig. 2. Comparison of the energy-performance overhead products

Figure 2 presents the energy-performance overhead products for all fetch poli-
cies using 1KB instruction cache. The x-axis represents the ratio of the HP thread
degree of importance to the LP thread degree of importance. In addition to this,
the figure shows the overhead product values for HPFirst and RR policies us-
ing 2KB and 4KB instruction caches. When the ratio is 1, both threads are
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equally important, and there is no real advantage of using Fetch-around as it
has the highest energy-performance overhead product. When the ratio becomes
about 3, Fetch-around has lower overhead product than the other two policies
using the same size ICache. In fact, it is even slightly better than HPFirst us-
ing 2KB ICache. When the ratio is 5 and above, not only Fetch-around is more
energy-efficient than HPFirst and RR using the same ICache size but also better
than HPFirst and RR using 2KB and 4KB ICaches. When it becomes 10, Fetch-
around is 13% and 15% more efficient than HPFirst and RR for the same ICache
size. When the ratio ramps up towards 100, the energy-efficiency of Fetch-around
increases significantly. For instance, it becomes from 10% to 21% more efficient
that the other two policies with equal and larger ICaches when the ratio is 100.

5 Conclusion

We propose a new SMT thread fetching policy to be used in the context of sys-
tems that have priorities associated with threads, i.e. soft real-time applications
like real audio/video and tele/video conferencing. The proposed solution, Fetch-
around, has high priority threads access the ICache while requiring low priority
threads to directly access the L2 cache. This prevents the low priority threads
from thrashing the ICache and degrading the performance of the high priority
thread. It also allows the threads to simultaneously fetch instructions, improving
the aggregate performance of the system. When considering the energy perfor-
mance of the system, the Fetch-around policy does 13% better than the next
best policy with the same cache sizes when the priority of the high performance
thread is 10x that of the low priority thread. Alternatively, it achieves the same
performance while requiring only a quarter to half of the instruction cache space.
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